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LETTER TO THE EDITOR 

Multiparameter R-matrices and their quantum groups 

Arne Schirrmacher 
Max-Planck-Institut f"r Physik, Werner-Heisenberg-lnstilut. PO Box 40 12 12, Munich, 
Federal Republic of Germany 

Received 7 May 1991 

Abstracl Multiparameter solutions of the Yang-Baxter equation associated with the 
groups of types A, B, C, D are given as generalizations of the well known one-parameter 
solutions. 7he R-matrix approach to quantum groups used here is related to the algebraic 
one of Rheshitikhin. 

Much has been said ahout quantum groups based on the so-called standard solutions 
of the (quantum) Yang-Baxter equation (YBE) [1,2] while on multiparameter quantum 
groups only a small number of publications is at hand [3-71. In this letter it is shown 
that there exist natural multiparametric generalizations of the standard solutions. 

A simple example [SI will be used to introduce notation and to distinguish different 
types of deformation parameters. The main part of this letter presents multiparamet- 
ric R-matrix solutions of the YBE associated with the groups of types A, B, C, D, 
and shows how they are obtained by explicitly solving the YBE. These results are 
then related to the algebraic approach of Reshetikhin [5] by translating it to a 'Hopf 
algebra free' formulation of the R-matrix approach of 'Ihkhtajan and others [2]. We 
conclude with some remarks on the prospects of multiparameter quantum groups and 
its applications. 

As in ordinary group theory there are three structures that are related by a 
quantum group: the group itself given as a matrix of non-commuting entries, a 
coordinate space transformed by the group action, and the Lie algebra associated 
to the group that is in general also deformed. The commutation relations can be 
represented most simply using the R-matrix. Let us consider the two-dimensional 
general linear group as an example ( R  E C4x4): 

notation relations 

quantum group .=(::) R12TlT2 = TZTIRl, 

= (;) ( E -  l ) ( Z @ Z )  = 0 (1) 

R~,L:L; = L:L;R,, 
R,,L: L ;  = L ;  L:R,, 

quantum plane 

quantum Lie algebra Ti, H, li 

- . .  
where 2 = PR,  P is the permutation matrix, the normalization S.t. R:; = 1, and 
L* are matrix funetionals of the generators Ti, 11, li. 
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It has been shown, that if one starts with choosing a q-plane 

"Y = 9Y" (2) 

and a deformation of the Lie algebra relations of gl(2) with parameter r 

rH - r - H  
[Tt,T-] = [HI E r - r-1 [ T * , H ]  = fT* [IC,  ...I = 0 (3) 

this corresponds to the following R-matrix: 

0 
0 I / q  

The matrix functionals are in this case: 

(4) 

where p E r 2 / q ,  Ft 3 (q /r )H/2  T + ,  f- E T - ( q / r ) H / 2 .  
The group deformation then is to be: 

which is the two-parameter deformation of GL(2). A second quantum plane of 
exterior variables F ,  q, that can be interpreted as differentials of x and y, is also 
determined: 

The determinant can be defined and becomes central for q = r which allows us 
to define SL,(2). (For details see [SI, note the different notations for the second 
parameter r,  X = r z ,  or p = r 2 / q . )  

The underlying field for the coelficients has tacitly been assumed to be C and 
'real' versions of the group can be obtained by giving an appropriate conjugation. 
There are, however, two ways to do this: 

- y = x  - (Q) x = y  

( b )  x = x  Y = Y. 
- - 

Since we require = g2i the plane relations give: 

Xy=c/Xy- (Q) X y = q y X  
( b )  x y =  Ayx. 

'I 
(9) 
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For the group parameters conjugation has to be: 

- (4 T = T  

and hence 
- 

r2 r 2  

4 4 
a b  = -ba + ( a )  d =  -dc - etc 

- 
4 ( b )  a b =  =ba  etc 
r2 

yielding for the parameters 

i.e. both deformation parameters are either real or pure phases. These groups may 
be denoted as GL,,;,(Z,R) and GL,,,(2,R), respectively. 

Unitary groups can be found by requiring 

giving the group U+d(2), where q = reid, and SU,(2), where q = r E R, with two 
and one real deformation parameters, respectively. (2, = a d - q  eb is the determinant 
[8].) This can be seen from, for example, 

Remark In this paper we do  not consider Hopf-*-algebra quantum groups of an 
extended algebra with barred and unbarred generators providing mixed commutation 
relations. For distinction we write GL(2) instead of GL(2,C). Such extensions are 
in general not difficult to find but not necessarily unique 191. 

The procedure followed in the last section generalizes for GL(n) and with some 
restrictions also for SL(n), i.e. An-]. Similarly one can proceed for the classical 
series of semi-simple groups B,, C,, D,, i.e. SO(2n + l),  Sp(Zn), SO(2n). 

A,-,-the groups GL(n) and SL(n).  As in the two-dimensional case the Lie 
algebra has still one deformation parameter; the quantum space relations, however, 
can be chosen to be deformed more generally: 

. .  
i < j  (15) z'2J = q . .  .I,' 

:J  
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providing a total of NGL = n(n - 1)/2 + 1 parameters (qij and r) for the corre- 
ponding R-matrix (R = RYf eik @ ej'): 

where OiJ equals 1 for i > j and zero otherwise. Note, no summation over repeated 
indices is involved here. The group relations given by this R-matrix are not dilficult 
to work out and can be found in [6]. 

'Ib arrive at the quantized SL(n) from GLPxiq,,(n) it is necessary to make the 
determinant 2) central before it can consistently be identified with unity. In the GL 
case the determinant has the following property [6]: 

In order to render the factor picked up to unity, one can simply choose all q's equal 
to r. This gives the well known one-parameter deformation SL,( n). More generally 
the centrality of the determinant can be achieved by requiring 

(18) 
r2 r2 

4i,i+l Pi," 
91,; 42,i ' ' ' 4i-l,i  - ... - = constant 

for all i = 1,. . . , n. This last requirement results in n- 1 conditions among the qij's 
in addition to determining constant = rn-'. The number of deformation parameters 
has been reduced to NsL = NGL - (n - 1)  = ( n  - l ) ( n  - 2 ) / 2  + 1 .  

To give an example consider SLVziq,,(4) with qI4 = r3/qI2ql3,  q24 = r q I 2 / q z 3  

There are again two ways to impose reality conditions on GL( n) ( i '  3 n + 1 - i ) :  
and 434 = '/413q23. 

2 - iQ - 
T = T = e's;> r - - e  

- x i  = x' 
(19) 

rz E R .  - - 
(a) 

Ti - T;: ( b )  x i  = 21' k -  'J J ' i '  q . .  = q .  - 

giving GLo;s,j(n,R) and GLr2;G=qj,i,(n,R) and similarly for SL. Deriving the 
unitary versions is left to the reader. 

B,, C,, D,-orthogonal and symplectic groups. For the groups of types B, 
C, D an additional structure, the metric, has to be implemented in a consistent 
manner. The metric C defines a length L = X'CZ and providcs the orthogonality 
(or symplectic) relation 

TC-'T'C = 1 = C-IT'CT (20) 

for quantum matrices T. Roughly speaking, it is the required centrality of the length 
forcing the metric to be anti-diagonal. (Clearly, it can be diagonalized in the classical 
limit): 

C..  *J = ci 6. (j' n + 1 - j) with ci ci, = f l .  (21) 
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(The last requirement is not necessarily so at this stage but has been made to facilitate 
the argument; it can be motivated, for example, by consistency of double conjugation, 
see below (38).) Hence also in the R-matrix a piece containing primed indices 
appears. We make the following ansatz (motivated by the 'standard' solutions): 

where 0 is as above and a; are coefficients to be determined. Inserting the orthog- 
onality condition, T = C-'(TL)-'CT , into ' the group relations, RTlT2 = T2T,R, 
it follows that 

(23) R =  C-lRL'C - c-1 R-1 t 
1 -  2 ( )2c2 

implying for (22) 

As in the GL case we have qii = 1 and q j i  = rz /q i j  and hence (24) yields 

-2 -2 

i.e. q i j ,  i < j < n / 2 ,  give all q's. 

from the YBE decouple. From (24) we get 
Having fixed the relations among the q's, one finds that the relations for the Q ~ ' S  

(26) k' a; = ai l  

and the YBE provides 
. .  

a!aJ ~k = -a' k (27) 

and 

In combination (26) and (27) are now a recursive set of relations that can be solved 
using the 'initial conditions' (28). Tiking also into account that we have to meet 
the orthogonality relation (24), one finds a i  = - c ~ E ~ T ' - '  where i are integers 
determined by the above conditions and the e's matter only in the symplectic case. 
Equation (28) yields: 

i-  - 

( m -  +, m - 3 2 , . .  . , ? , o , - f , . .  1 . ,?  1 - m) 

( m - l , m - 2  ,..., l,O,O,-1, ..., 1 - m )  

for B, 

for D,. 
for C,,, (29) ( m , m - l ,  ..., 1,-1, . . . ,  1 - m , - m )  
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The ti's of the metric have to  be chosen as 

+ 1  for B ,  and D, 

{ -1 for C, and i > m 

I 

with ei = + 1  for C, and i < m (30) C.- = ci  r'6ij, $1 

thus ci c i ,  = -1 only for symplectic groups. In the notation of [2] we have: 

with (29) and (30). The second term is only present for the B, case. 
Inspection of the classical limits shows the association with the indicated groups. 

It turns out that the non-diagonal parts of the multiparameter R-matrices coincide 
with the standard solutions (cf e.g. [2])-they coincide anyway for all qij = r- 
and also the characteristic equation depends only on the Lie algebra deformation 
parameter r and matches those for the standard solutions (r  = q) if one normalizes 
E appropriately (@i = 1): 

Remark: Strictly speaking, the orthogonal groups are just O(n) rather titan SO(n) ,  
i.e. the determinant is f l .  I t  is, however, possiblc to use the isomorphy SO(n)  = 
O(n)/Zz by identification of pairs of quantum matrices having different sign of the 
determinants, e.g. T - diag( -1, 1, 1, . . .) T. Alternatively one could require the 
determinant condition explicitly. 

Example: S0 ,1 ;q (4 ) .  The two-paramcter orthogonal group in four dimensions I h S -  
trates the greater gcnerality of multiparameter quantum groups. Since the charac- 
teristic equation coincides with that of the standard solutions, so does the projector 
decomposition of [2]. The relations for the quantum vector space are: 

-2 I 
2 2' - -x3x1 x2x3 = x3x2 X l X Z  = 4 2'22'1 1 3 -  

x3x4 = - x4x3 
(33) P 

x1x4 = x4x1 - ( r  - t) x2x3 2 
4 

x2x4 = I q X 2  
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and for the exterior coordinates, = 0, we find: 

The metric (21) 

c= i, 1 +) (35) 

gives the central length 

L = r-’x1z4 + x2x3 + x3x2 + rx4zl = ( T  + r-’)(z1z4 + r z2x3) . (36) 

Interestingly enough, the two-parameter R-matrix for SO(4)  cannot be constructed 
as the tensor product of two SL(2) (unless q = T )  [lo]: 

R(S0 ,1 , , (4 ) )  # R ( S L p ( 2 ) )  @ R(SLP, (2 ) ) .  (37) 

Real versions. Conjugation can be.defined trivially F = x, ?: = T, or with help of 
the metric 

(38) xi = zi = C! zk  x k  i.e. , ,,x 

T+ = T-’ i.e. 7’ = (T-’)‘ . (39) 

i’ - - 
x .  = c .  

- 

Compatibility with the quantum group relations can be checked by computing the 
adjoint of 

2 .  ( T  @ T )  = ( T @  T )  . k . 

R+ . ( T @  T )  = (T  @ T )  . R+ 

(40) 

One finds 

(41) 

where R = RP. This holds if the R-matrix obeys 

(Rfr)=~i;  i.e. q . . q . . = r 2 E R  ‘I :I or 4;; = T P . 1 .  (42) 
- . .  

The plane deformation parameters qij exhibit a deformation structure which one 
could call ‘radial quantization’, where the parameter r provides the modulus for all 
q’s combined with an independent phase. Hence, taking real deformation parameters 
its number stays the same as without reality condition. 

In order to investigate the signature of the metric one can define ‘real’ coordinates: 
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Under this transformation the metric becomes 

Since for T + 1 all ci become unity, this reality condition gives the quantum groups 

In the other case F = I (thus the coordinates are already ‘real’) diago- 
nalization of the antidiagonal metric makes us arrive at SO,,,,,(n/2,n/2) and 
SO,,d,,((n+ 1 ) / 2 , ( n  - 1) /2 )  for TI even and odd, repectively. Constructing de- 
formed groups of other signature is a more involved topic that needs more com- 
plicated R-matrices. For the Lorenz group it is not yet clear whether one or two 
independent parameters can be found. 

Reshetikhin has developed a derivation of multiparameter R-matrices from the 
standard one-parameter versions employing the universal R-matrix living in the tensor 
product of an algebra A with itself and having Hopf algebra properties [SI. It 
can be shown that a second element of the tensor algebra, given in terms of the 
generators of the Cartan subalgebra of the associated deformed Lie algebra, provides 
a transformation yielding a new universal R-matrix. By representation the numerical 
multiparameter R-matrix is constructed. 

It is easy, however, to translate this algebraist approach to a simple matrix for- 
malism on the lines of lhkthajan 121 and others omitting the detour to the universal 
R-matrices [13]: The definition of a Hopf algebra with comultiplication A and an 
universal R E A @ A s.t. 

( A @ i d ) R =  R13R,, ( i d @ A ) R =  RI3R,, a o A ( a )  = RA(a)R-’  

so+,, .1 (%W.  

(45) 

impiies the Yang-Baxter equation 

R12R13R23 = R23R13R12 (46) 

which contains all information we need in the R-matrix approach to quantum groups. 
Reshetikhin requires for an additional element F E A @ A 

( A @ i d ) F =  FI3Fz3 ( i d @ A ) F =  FI3Fl2 F1,FZ1 = 1 (47) 

F12F13F23 = F23F13F12’ (48) 

and also the YBE 

Then RF E F-lRF-’ is also a solution of the YBE. 

change the embeddings and secondly using the last equality of ( 4 9 ,  one finds: 
Applying ( U  o A @ id) on F in two different ways, firstly letting U simply inter- 

( a o A @ i d ) ( F ) = o , , ( F , 3 F z 3 )  = F23F13 

= R12F13F23R;21 , (49) 
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i.e. 

R12F13F23 = F23F13R12 

and similarly using (id @ 0 o A)( F )  

F12F13R23 = R23F13F12 ‘ (51) 

Like the YBE for R, also those for F and for mixed R and F can now simply 
be considered as matrix equations. With this ‘translation’ it needs just a triangular 
( Fl2Fz1 = 1) solution of the YBE that obeys also (SO) and (51) in order to associate 
a new R-matrix to a given one. (At this stage the construction obviously becomes 
circular since we need a solution of the YBE in order to find a new one; it turns out, 

If we choose F = diag(fll, fl2, . . . , fnn)  with fij f,; = 1, it is easy to show that 
however, that rather trivia! JQ!EtionJ he$.) 

F-’ R(GL,) F-’ = R ( G J ~ + ; ~ ; ~ )  4.. tJ = - rf?. * J  (52) 

i.e. the standard one-parameter deformation is transformed to the multiparameter 
deformation (16). (In terms of this is a similarity transformation that, however, 
does not decompose into a simple tensor product F # f 8 9.) 

By the same means the multiparameter versions of the R-matrices of types B, 
C, D are related to the standard solutions since, having an additional term of type 
6ij’Sk,, equations (50) and (51) require in addition 

1 
J , ‘ , ’  f . . - - - - = f  .... - 1 

J I J  - (53) 

which turns out to be equivalent to (25). 
This R-matrix formulation also provides a nice way to verify the results of the 

last section. Using (49), (50) and (51) one can reduce the YBE for RFto those for R 
and F alone. 

Remark. There are nonetheless additional one-parameter solutions of the YBE that 
are related to the ‘standard’ one by a non-diagonal matrix [12,13]. Since the entry 
structure of these R-matrices is more complicated, more restricting relations of type 
(53) arise making multiparameter versions almost always impossible. 

In accordance with the abstract treatment of Reshetikhin we have explicitly shown, 
thatforgroupsof type A, B, C, D that ~ ( r - 1 ) / 2 + 1  quantization parametersemerge 
from solving the YBE if T is the rank of the group. It is the maximal number of 
deformation parameters for quantum groups with thc same structure of commutation 
relation as the standard solutions. 

Tb give an idea of the coherence of multiparameter quantum groups, we note that 

a 2n-dimensional phase space built from a n-dimensional linear space (cf Zumino’s 
construction (141) allow for symplectic transformations also in the deformed case not 
restricting the possible multiparametric deformation structure. 

A many-parameter deformation of a group provides many one-parameter defor- 
mations. Thus this letter does not intend to persuade the reader to use always the 

:hC hc: :ha: G-L(E) a:.d sp:2-: 8:P af the S B m P  :risk cn::esponds tO the kct  thnt 

. 
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most general deformation structure possible but rather points out that different pa- 
rameter kings lead to different structures with few or only one parameter having 
different properties. See, for example, [15] exhibiting that it is the deformation GL,;, 
rather than the 'standard' deformation CL,,;, that seems to be suitable to define a 
path integral. 

In general, it will depend on the physical application which deformation structure 
is appropriate. Hoping that the 'standard' one will do is, however, not justified. 

Very fruitful discussions with J Schwenk, K Schmiidgen and A Kempf are acknowl- 
edged. 
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